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C O V E R  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

The Architecture of
Virtual Machines 

V irtualization has become an important
tool in computer system design, and vir-
tual machines are used in a number of
subdisciplines ranging from operating
systems to programming languages to

processor architectures. By freeing developers and
users from traditional interface and resource con-
straints, VMs enhance software interoperability,
system impregnability, and platform versatility. 

Because VMs are the product of diverse groups
with different goals, however, there has been rela-
tively little unification of VM concepts.
Consequently, it is useful to take a step back, con-
sider the variety of VM architectures, and describe
them in a unified way, putting both the notion of
virtualization and the types of VMs in perspective. 

ABSTRACTION AND VIRTUALIZATION
Despite their incredible complexity, computer sys-

tems exist and continue to evolve because they are
designed as hierarchies with well-defined interfaces
that separate levels of abstraction. Using well-
defined interfaces facilitates independent subsystem
development by both hardware and software design
teams. The simplifying abstractions hide lower-level
implementation details, thereby reducing the com-
plexity of the design process. 

Figure 1a shows an example of abstraction
applied to disk storage. The operating system
abstracts hard-disk addressing details—for exam-
ple, that it is comprised of sectors and tracks—so
that the disk appears to application software as a
set of variable-sized files. Application programmers
can then create, write, and read files without know-
ing the hard disk’s construction and physical orga-
nization.

A computer’s instruction set architecture (ISA)
clearly exemplifies the advantages of well-defined
interfaces. Well-defined interfaces permit develop-
ment of interacting computer subsystems not only
in different organizations but also at different times,
sometimes years apart. For example, Intel and
AMD designers develop microprocessors that
implement the Intel IA-32 (x86) instruction set,
while Microsoft developers write software that is
compiled to the same instruction set. Because both
groups satisfy the ISA specification, the software
can be expected to execute correctly on any PC built
with an IA-32 microprocessor. 

Unfortunately, well-defined interfaces also have
their limitations. Subsystems and components
designed to specifications for one interface will not
work with those designed for another. For exam-
ple, application programs, when distributed as com-
piled binaries, are tied to a specific ISA and depend
on a specific operating system interface. This lack of
interoperability can be confining, especially in a
world of networked computers where it is advan-
tageous to move software as freely as data.

Virtualization provides a way of getting around
such constraints. Virtualizing a system or compo-
nent—such as a processor, memory, or an I/O
device—at a given abstraction level maps its inter-
face and visible resources onto the interface and
resources of an underlying, possibly different, real
system. Consequently, the real system appears as a
different virtual system or even as multiple virtual
systems. 

Unlike abstraction, virtualization does not nec-
essarily aim to simplify or hide details. For example,
in Figure 1b, virtualization transforms a single large
disk into two smaller virtual disks, each of which
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appears to have its own tracks and sectors.
Virtualizing software uses the file abstraction as an
intermediate step to provide a mapping between
the virtual and real disks. A write to a virtual disk
is converted to a file write (and therefore to a real
disk write). Note that the level of detail provided at
the virtual disk interface—the sector/track address-
ing—is no different from that for a real disk; no
abstraction takes place.

VIRTUAL MACHINES
The concept of virtualization can be applied not

only to subsystems such as disks but to an entire
machine. To implement a virtual machine, devel-
opers add a software layer to a real machine to sup-
port the desired architecture. By doing so, a VM
can circumvent real machine compatibility and
hardware resource constraints. 

Architected interfaces
A discussion of VMs is also a discussion about

computer architecture in the pure sense of the term.
Because VM implementations lie at architected
interfaces, a major consideration in the construc-
tion of a VM is the fidelity with which it imple-
ments these interfaces.

Architecture, as applied to computer systems,
refers to a formal specification of an interface in the
system, including the logical behavior of resources
managed via the interface. Implementation
describes the actual embodiment of an architecture.
Abstraction levels correspond to implementation
layers, whether in hardware or software, each asso-
ciated with its own interface or architecture. 

Figure 2 shows some important interfaces and
implementation layers in a typical computer sys-
tem. Three of these interfaces at or near the
HW/SW boundary—the instruction set architec-
ture, the application binary interface, and the appli-
cation programming interface—are especially
important for VM construction. 

Instruction set architecture. The ISA marks the
division between hardware and software, and con-
sists of interfaces 3 and 4 in Figure 2. Interface 4
represents the user ISA and includes those aspects
visible to an application program. Interface 3, the
system ISA, is a superset of the user ISA and
includes those aspects visible only to operating sys-
tem software responsible for managing hardware
resources.

Application binary interface. The ABI gives a pro-
gram access to the hardware resources and services
available in a system through the user ISA (inter-
face 4) and the system call interface (interface 2).

The ABI does not include system instructions;
rather, all application programs interact with the
hardware resources indirectly by invoking the
operating system’s services via the system call inter-
face. System calls provide a way for an operating
system to perform operations on behalf of a user
program after validating their authenticity and
safety.

Application programming interface. The API gives a
program access to the hardware resources and ser-
vices available in a system through the user ISA
(interface 4) supplemented with high-level language
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Figure 1. Abstraction and virtualization applied to disk storage. (a) Abstraction
provides a simplified interface to underlying resources. (b) Virtualization provides
a different interface or different resources at the same abstraction level.
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Figure 2. Computer system architecture. Key implementation layers communicate
vertically via the instruction set architecture (ISA), application binary interface
(ABI), and application programming interface (API).
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(HLL) library calls (interface 1). Any system calls
are usually performed through libraries. Using an
API enables application software to be ported eas-
ily, through recompilation, to other systems that
support the same API. 

Process and system VMs 
To understand what a virtual machine is, it is first

necessary to consider the meaning of “machine”
from both a process and system perspective. 

From the perspective of a process executing a user
program, the machine consists of a logical memory
address space assigned to the process along with
user-level instructions and registers that allow the
execution of code belonging to the process. The
machine’s I/O is visible only through the operating
system, and the only way the process can interact
with the I/O system is through operating system
calls. Thus the ABI defines the machine as seen by a
process. Similarly, the API specifies the machine char-
acteristics as seen by an application’s HLL program.

From the perspective of the operating system and
the applications it supports, the entire system runs on
an underlying machine. A system is a full execution
environment that can support numerous processes
simultaneously. These processes share a file system
and other I/O resources. The system environment
persists over time as processes come and go. The sys-
tem allocates real memory and I/O resources to the
processes, and allows the processes to interact with
their resources. From the system perspective, there-
fore, the underlying hardware’s characteristics alone
define the machine; it is the ISA that provides the
interface between the system and machine.

Just as there are process and system perspectives
of “machine,” there are process and system virtual
machines. A process VM is a virtual platform that
executes an individual process. This type of VM
exists solely to support the process; it is created
when the process is created and terminates when
the process terminates. In contrast, a system VM
provides a complete, persistent system environment
that supports an operating system along with its
many user processes. It provides the guest operat-
ing system with access to virtual hardware
resources, including networking, I/O, and perhaps
a graphical user interface along with a processor
and memory. 

The process or system that runs on a VM is the
guest, while the underlying platform that supports
the VM is the host. The virtualizing software that
implements a process VM is often termed the run-
time, short for “runtime software.” The virtualiz-
ing software in a system VM is typically referred
to as the virtual machine monitor (VMM).  

Figure 3 depicts process and system VMs, with
compatible interfaces illustrated graphically as
meshing boundaries. In a process VM, the virtual-
izing software is at the ABI or API level, atop the
OS/HW combination. The runtime emulates both
user-level instructions and either operating system
or library calls. In a system VM, the virtualizing
software is between the host hardware machine
and the guest software. The VMM emulates the
hardware ISA so that the guest software can poten-
tially execute a different ISA from the one imple-
mented on the host. However, in many system VM
applications, the VMM does not perform instruc-
tion emulation; rather, its primary role is to pro-
vide virtualized hardware resources.

PROCESS VIRTUAL MACHINES
Process VMs provide a virtual ABI or API envi-

ronment for user applications. In their various
implementations, process VMs offer replication,
emulation, and optimization. 

Multiprogrammed systems
The most common process VM is so ubiquitous

that few regard it as being a VM. Most operating
systems can simultaneously support multiple user
processes through multiprogramming, which gives
each process the illusion of having a complete
machine to itself. Each process has its own address
space, registers, and file structure. The operating
system time-shares the hardware and manages
underlying resources to make this possible. In
effect, the operating system provides a replicated
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Figure 3. Process and system VMs. (a) In a process VM, virtualizing software
translates a set of OS and user-level instructions composing one platform to
those of another. (b) In a system VM, virtualizing software translates the ISA used
by one hardware platform to that of another.  



process-level VM for each of the concurrently exe-
cuting applications.

Emulators and dynamic binary translators
A more challenging problem for process-level

VMs is that of supporting program binaries com-
piled to an instruction set different from the one the
host executes. A recent example of a process VM is
the Intel IA32-EL,1 which allows Intel IA-32 appli-
cation binaries to run on Itanium hardware. 

The most straightforward way of performing
emulation is through interpretation. An interpreter
program fetches, decodes, and emulates the execu-
tion of individual guest instructions. This can be a
relatively slow process, requiring tens of host
instructions for each source instruction interpreted.
Better performance can be obtained through
dynamic binary translation, which converts guest
instructions to host instructions in blocks rather
than instruction by instruction and saves them for
reuse in a software cache. Repeated execution of
the translated instructions thus amortizes the rela-
tively high overhead of translation. 

Same-ISA binary optimizers
To reduce performance losses, dynamic binary

translators sometimes perform code optimizations
during translation. This capability leads naturally
to VMs wherein the instruction sets that the host
and guest use are the same, with optimization of a
program binary as the VM’s sole purpose. Same-
ISA dynamic binary optimizers use profile infor-
mation collected during the interpretation or
translation phase to optimize the binary on-the-fly.
An example of such an optimizer is the Dynamo
system, originally developed as a research project at
Hewlett-Packard.2

High-level-language VMs
For process VMs, cross-platform portability is

clearly a key objective. However, emulating one
conventional architecture on another provides
cross-platform compatibility only on a case-by-case
basis and requires considerable programming effort.
Full cross-platform portability is more readily
achieved by designing a process-level VM as part of
an overall HLL application development environ-
ment. The resulting HLL VM does not directly cor-
respond to any real platform; rather, it is designed
for ease of portability and to match the features of
a given HLL or set of HLLs. 

Figure 4 shows the difference between a con-
ventional platform-specific compilation environ-
ment and an HLL VM environment. In a

conventional system, shown in Figure 4a, a com-
piler front end first generates intermediate code that
is similar to machine code but more abstract. Then,
a code generator uses the intermediate code to gen-
erate a binary containing machine code for a spe-
cific ISA and operating system. This binary file is
distributed and executed on platforms that support
the given ISA/OS combination.

In an HLL VM, as shown in Figure 4b, a com-
piler front end generates abstract machine code in
a virtual ISA that specifies the VM’s interface. This
virtual ISA code, along with associated data struc-
ture information (metadata), is distributed for exe-
cution on different platforms. Each host platform
implements a VM capable of loading and executing
the virtual ISA and a set of library routines specified
by a standardized API. In its simplest form, the VM
contains an interpreter. More sophisticated, higher-
performance VMs compile the abstract machine
code into host machine code for direct execution
on the host platform.  

An advantage of an HLL VM is that application
software is easily ported once the VM and libraries
are implemented on a host platform. While the VM
implementation takes some effort, it is much sim-
pler than developing a full-blown compiler for a
platform and porting every application through
recompilation.  

The Sun Microsystems Java VM architecture3

and the Microsoft Common Language Infra-
structure, which is the foundation of the .NET
framework,4 are widely used examples of HLL
VMs. The ISAs in both systems are stack-based to
eliminate register requirements and use an abstract
data specification and memory model that supports
secure object-oriented programming. 

SYSTEM VIRTUAL MACHINES
A system VM provides a complete environment

in which an operating system and many processes,
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possibly belonging to multiple users, can
coexist. By using system VMs, a single-host
hardware platform can support multiple, iso-
lated guest operating system environments
simultaneously. 

System VMs emerged during the 1960s
and early 1970s5 and were the origin of the
term virtual machine. At that time, main-
frame computer systems were very large,
expensive, and usually shared among numer-
ous users; with VM technology, different user
groups could run different operating systems

on the shared hardware.   
As hardware became less expensive and much of

it migrated to the desktop, interest in these origi-
nal system VMs faded. Today, however, system
VMs are enjoying renewed popularity as the large
mainframe systems of the past have been replaced
by servers or server farms shared by many users 
or groups. 

Perhaps the most important current application
of system VM technology is the isolation it pro-
vides between multiple systems running concur-
rently on the same hardware platform. If security
on one guest system is compromised or if one guest
operating system suffers a failure, the software run-
ning on other guest systems is not affected. 

In a system VM, the VMM primarily provides
platform replication. The central issue is dividing a
set of hardware resources among multiple guest
operating system environments—an example is
disk virtualization, as in Figure 1. The VMM has
access to, and manages, all the hardware resources.
A guest operating system and its application
processes are then managed under (hidden) control
of the VMM. When a guest operating system per-
forms a privileged instruction or operation that
directly interacts with shared hardware resources,
the VMM intercepts the operation, checks it for
correctness, and performs it on behalf of the guest.
Guest software is unaware of this behind-the-scenes
work. 

Classic system VMs
From the user perspective, most system VMs pro-

vide essentially the same functionality but differ in
their implementation details. The classic approach6

places the VMM on bare hardware and the VMs fit
on top. The VMM runs in the most highly privi-
leged mode, while all guest systems run with
reduced privileges so that the VMM can intercept
and emulate all guest operating system actions that
would normally access or manipulate critical hard-
ware resources. 

Hosted VMs 
An alternative system VM implementation builds

virtualizing software on top of an existing host oper-
ating system, resulting in a hosted VM. An advan-
tage of a hosted VM is that a user installs it just like
a typical application program. Further, virtualizing
software can rely on the host operating system to
provide device drivers and other lower-level services
rather than on the VMM. An example of a hosted
VM implementation is the VMware GSX server,7

which runs on IA-32 hardware platforms.  

Whole-system VMs
In conventional system VMs, all guest and host

system software as well as application software use
the same ISA as the underlying hardware. In some
situations, however, the host and guest systems do
not have a common ISA. For example, the two
most popular desktop systems today, Windows PCs
and Apple PowerPC-based systems, use different
ISAs (and different operating systems). 

Whole-system VMs deal with this situation by vir-
tualizing all software, including the operating sys-
tem and applications. Because the ISAs differ, the
VM must emulate both the application and operat-
ing system code. An example of this type of VM is
the Virtual PC,8 in which a Windows system runs on
a Macintosh platform. The VM software executes
as an application program supported by the host
operating system and uses no system ISA operations.  

Multiprocessor virtualization
An interesting form of system virtualization

occurs when the underlying host platform is a large
shared-memory multiprocessor. Here, an impor-
tant objective is to partition the large system into
multiple smaller multiprocessor systems by dis-
tributing the underlying hardware resources of the
large system.  

With physical partitioning,9 the physical
resources that one virtual system uses are disjoint
from those used by other virtual systems. Physical
partitioning provides a high degree of isolation, so
that neither software problems nor hardware faults
on one partition affect programs in other partitions.
With logical partitioning,10 the underlying hard-
ware resources are time-multiplexed between the
different partitions, thereby improving system
resource utilization.  However, some of the bene-
fits of hardware isolation are lost. 

Both partitioning techniques typically use special
software or firmware support based on underlying
hardware modifications specifically targeted at par-
titioning.

VM technology 
provides isolation
between multiple
systems running
concurrently on 

the same hardware
platform.



Codesigned VMs
Functionality and portability are the goals of

most system VMs that are implemented on hard-
ware already developed for some standard ISA. In
contrast, codesigned VMs implement new, propri-
etary ISAs targeted at improving performance,
power efficiency, or both. The host’s ISA may be
completely new, or it may be an extension of an
existing ISA.  

A codesigned VM has no native ISA applications.
Instead, the VMM appears to be part of the hard-
ware implementation; its sole purpose is to emu-
late the guest’s ISA. To maintain this illusion, the
VMM resides in a region of memory concealed
from all conventional software. It includes a binary
translator that converts guest instructions into opti-
mized sequences of host ISA instructions and caches
them in the concealed memory region.

Perhaps the best-known example of a codesigned
VM is the Transmeta Crusoe.11 In this processor,
the underlying hardware uses a very-long instruc-
tion word architecture, and the guest ISA is the Intel
IA-32. The Transmeta designers focused on the
power-saving advantages of simpler VLIW hard-
ware. 

The IBM AS/400 (now the iSeries) also uses co-
designed VM techniques.12 Unlike other codesigned
VMs, the AS/400’s primary design objective is to
provide support for an object-based instruction set
that redefines the HW/SW interface in a novel fash-
ion. Current AS/400 implementations are based on
an extended PowerPC ISA, whereas earlier versions
used a considerably different, proprietary ISA.

VIRTUAL MACHINE TAXONOMY
Given this broad array of VMs, with different

goals and implementations, it is helpful to put them
in perspective and organize the common imple-
mentation issues. Figure 5 presents a simple tax-
onomy of VMs, which are first divided into either
process or system VMs. Within these two major
categories, VMs can be further distinguished
according to whether they use the same ISA or a
different one. The basis for this differentiation is
that ISA emulation is a dominant feature in those
VMs that support it.

Among the process VMs that do not perform ISA
emulation are multiprogrammed systems, which
most of today’s computers already support. Also
included are same-ISA dynamic binary optimizers,
which employ many of the same techniques as ISA
emulation. 

Process VMs with different guest and host ISAs
include dynamic translators, with the machine

interface typically defined at the ABI level, and HLL
VMs with an API-level interface. 

System VMs consist of classic system VMs as
well as hosted VMs that provide replicated, iso-
lated system environments. The primary difference
between classic system and hosted VMs is the
VMM implementation rather than the function
they provide to the user.

In whole-system VMs, wherein the guest and
host ISAs are different, performance is often sec-
ondary to accurate functionality. When perfor-
mance or power/area efficiency becomes important,
as is the case with codesigned VMs, the VM imple-
mentation interface may be closer to the proces-
sor’s physical hardware. 

M odern computer systems are complex struc-
tures containing numerous closely interact-
ing components in both software and

hardware. Within this universe, virtualization acts
as a type of interconnection technology. Interjecting
virtualizing software between abstraction layers
near the HW/SW interface forms a virtual machine
that allows otherwise incompatible subsystems to
work together. Further, replication by virtualiza-
tion enables more flexible and efficient use of hard-
ware resources.

VMs are now widely used to enable interoper-
ability between hardware, system software, and
application software. Given the heavy reliance on
standards and consolidation occurring in the indus-
try, it is likely that any new ISA, operating system,
or programming language will be based on VM
technology. In the future, VMs should be viewed
as a unified discipline to the same degree that hard-
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ware, operating systems, and application software
are today. �
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