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Virtualization Benefits in Embedded Systems

� Workload consolidation

� E.g. Applications + Baseband sharing a multicore SoC

� Flexible resource provisioning

� License barrier

� Legacy software support

� important with the multitude and variety of embedded 

operating systems (commercial and even home-brew)

� Reliability

� Security
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Virtualization trade-off

� Performance:

� Applications that used to own the whole processor must now share

� Hypervisor adds runtime overhead & increases memory footprint 

� Real-time properties ? 

� Full virtualization without hardware support means software 
emulation

� Complexity:

� Old scenario: two software stacks + two hardware systems

� New scenario: two software stacks + one hardware system + one host 
kernel

� More abstraction layers � more bugs …

� Security & reliability:
� Increased size of Trusted Computing Base (TCB)

� Increased impact of hardware failure

� I/O: emulation vs (para)virtual vs direct access
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Essentials of a hypervisor

� Parent partition (minimum-footprint OS) + Hypervisor

� Hypervisor: Thin layer of software running on the hardware

� Supports creation of partitions (virtual machines)

� Each partition has one or more virtual processors

� Partitions can own or share hardware resources

� Enforces memory access rules

� Enforces policy for CPU usage

� Virtual processors are scheduled on real processors

� Enforces ownership of other devices

� Provides inter-partition messaging

� Messages appear as interrupts

� Exposes simple programmatic interface: “hypercalls”
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Virtualization extensions to the ARMv7-A architecture

� Virtualization extensions to the ARMv7-A architecture:
� Available in Cortex A-15 / A-7 CPUs

� Hyp - New privilege level (for hypervisor)

� GuestOS: SVC privilege level, Applications: USR privilege level

� 2-stage address translation (for OS and hypervisor levels)

� Complementary to TrustZone security extensions

� Mechanisms to minimize hypervisor intervention for “routine” 
GuestOS tasks: 
� Page table management

� Interrupt masking & Communication with the interrupt controller (GIC) 

� Device drivers (hypervisor memory relocation)

� Emulation of Load/Store accesses and trapped instructions

� Hypervisor Syndrome Register: Hype mode entry reason (syndrome)

� Traps into Hyp mode for ID register accesses & idling (WFI/WFE)

� System instructions to read/write key registers
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Privilege levels
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� Guest OS: same kernel/user privilege structure

� HYP mode: higher privilege than OS kernel level

� hvc instruction (hypercall)

� VMM controls wide range of OS accesses

� Hardware maintains TZ security (4th privilege level)
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Virtual Memory (1-stage translation)
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� Without virtualisation, the OS owns the memory

� Allocates areas of memory to the different applications

� Virtual Memory commonly used in “rich” operating systems
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Virtual Memory (2-stage translation)

8 Virtualization in the ARMv7 Architecture

Stage 1 translation owned 

by each Guest OS

Virtual address (VA) map of 

each App on each Guest OS
“Intermediate Physical” address 

map of each Guest OS   (IPA)

Physical Address (PA) Map 

Stage 2 translation owned by the VMM

Hardware has 2-stage 

memory translation

Tables from Guest OS 

translate VA to IPA

Second set of tables from 

VMM translate IPA to PA

Allows aborts to be routed to 

appropriate software layer



Virtualization of interrupts
� An interrupt might need to be routed to one of:

� Current or different GuestOS

� Hypervisor 

� OS/RTOS running in the secure TrustZone environment

� Physical interrupts are taken initially in the Hypervisor 

� If the Interrupt should go to a GuestOS :

� Hypervisor maps a “virtual” interrupt for that GuestOS



Virtual Interrupt Controller

� ISR of GuestOS interacts with the virtual controller
� Pending and Active interrupt lists for each GuestOS

� Interact with the physical GIC in hardware

� Creates Virtual Interrupts only when priority indicates it is necessary

� GuestOS ISRs therefore do not need calls for:
� Determining interrupt to take  [Read of Interrupt Acknowledge]

� Marking the end of an interrupt [Sending EOI]

� Changing CPU Interrupt Priority Mask [Current Priority]

� GIC has separate sets of internal registers:
� Physical registers and virtual registers

� Non-virtualized system and hypervisor access the physical registers

� Virtual machines access the virtual registers

� Guest OS functionality does not change when accessing the vGIC

� Hypervisor remaps virtual registers for use by GuestOS’es
� Interrupts generate a hypervisor trap
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Virtual interrupt sequence
� External IRQ (configured as virtual by the hypervisor) arrives at the GIC

� GIC Distributor signals a Physical IRQ to the CPU

� CPU takes HYP trap, and Hypervisor reads the interrupt status from the Physical 
CPU Interface

� Hypervisor makes an entry in register list in the GIC

� GIC Distributor signals a Virtual IRQ to the CPU

� CPU takes an IRQ exception, and Guest OS running on the virtual machine reads 
the interrupt status from the Virtual CPU Interface
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Virtual I/O devices

� Memory-mapped devices

� Read/write accesses to device registers have specific side-effects

� Virtual devices � emulation

� Typically, read/write accesses have to trap to Hypervisor

� Fetch & interpretation of emulated load/stores is performance-intensive

� Syndrome: key information about an instruction

� Source/destination register, Size of data transfer, …

� Available for some loads/stores (on abort)

� If not available, then it is required to fetch the instruction for full emulation

� System MMU: 2nd-stage address translation for devices

� Allows devices to be programmed into Guest’s VA space 
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System MMU (IO-MMU)
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ARM TrustZone (Secure System Partitioning)
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Propagation of System Security Mode
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NS : Not Secure - treated like an address line



Boot sequence with Hypervisor
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